Algebra II

12-2

Trigonometric Functions of Acute Angles

$$
\begin{aligned}
& \text { SOHCAHTOA } \\
& 1 \\
& \frac{a}{n}
\end{aligned}
$$

Reciprocal

$\begin{aligned} \text { sine }-\sin \theta & =\frac{y}{r}=\frac{\text { opposite }}{\text { hypotanuse }} \\ \text { cosine- } \cos \theta & =\frac{x}{r}=\frac{\text { adjacont }}{\text { hypotenuse }} \\ \text { tangent }-\tan \theta & =\frac{y}{x}=\frac{\text { opposile }}{\text { adjacent }} \end{aligned}$	

$$
\begin{aligned}
& \text { sine }-\sin \theta=\frac{y}{r}=\frac{\text { opposite }}{\text { hypotanuse }} \\
& \operatorname{cosine}-\cos \theta=\frac{x}{r}=\frac{\text { adjacent }}{\text { hypotenuse }} \\
& \text { tangent }-\tan \theta=\frac{y}{x}=\frac{\text { opposile }}{\text { adiacent }}
\end{aligned}
$$

Find the values of the six trigonometric functions of an angle θ in standard position whose terminal side passes through point P.

$\sin (\theta)$	15	$\csc (\theta)=$	$\frac{17}{15}$
$=$	17	$\sec (\theta)=$	$\frac{17}{8}$
$\cos (\theta)$	$\frac{8}{17}$	$\cot (\theta)=$	$\frac{8}{15}$
$=$	17 $\tan (\theta)$ $=$	$\frac{15}{8}$	

Complete the table. In each case, θ is an acute angle.
11)

$$
\begin{aligned}
\text { 量 }(\sqrt{3})^{2}+b^{2} & =2^{2} \\
3+b^{2} & =4 \\
b_{0} & =4 \\
b^{2} & =1 \\
b & =1
\end{aligned}
$$

Use co-function identities to find the measure of the acute angle φ.
17) $\cos \varphi=\sin 40^{\circ}$

Co- functions are equal if their angles are
complementary (add up to 90°)

Use the diagram at the right. Find the lengths of the sides and the measures of the angles that are not given. Leave your answers in simplest radical form.

$$
\text { 21) } \begin{aligned}
b & =2 \\
\angle A & =45^{\circ} \\
\angle B & =45^{\circ} \\
a & =2 \\
C & =2 \sqrt{2}
\end{aligned}
$$

